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for linear partial differential equations in cylinders, which
was applied to solve some nonlinear problems.In this paper the numerical simulation of the steady incompress-

ible viscous flow in a no-slip channel is considered. A sequence The purpose of this paper is to design nonlocal artificial
of approximate nonlocal artificial boundary conditions on a given boundary conditions for steady incompressible viscous flow
segment artificial boundary is derived by a system of linearized in the vorticity streamfunction formulation in the case
Navier–Stokes equations and spectral techniques. Then the original

when the domain is a no-slip channel. We introduce two-problem is reduced to a boundary value problem in a bounded
segment artificial boundaries in the physical domain. Thecomputational domain. The numerical examples show that these

artificial boundary conditions are very effective and are also more spectral Chebyshev Tau method [14] is used to design the
accurate than Dirichlet and Neumann boundary conditions, which artificial boundary condition. Then the original problem is
are often used in the engineering literature. Q 1996 Academic Press, Inc. reduced to a problem on a bounded computational domain.

Finally numerical examples show that the artificial bound-
ary conditions given in this paper are very effective.1. INTRODUCTION

Many problems arising in fluid flow lead to the resolution 2. NAVIER–STOKES EQUATIONS
of a system of partial differential equations in an un- AND THEIR LINEARIZATION
bounded domain. For instance, for steady state incom-

Throughout this paper we consider the numerical simu-pressible viscous flow in a channel, the resolution of Na-
lation of a steady incompressible viscous flow around avier–Stokes (N–S) equations in an unbounded domain is
body (domain Vi) in a no-slip channel defined by R 3proposed. One difficulty in the numerical simulations of
[0, L]. Let u, v denote the components of the velocity inthese problems is the unboundedness of the physical do-
the x and y coordinate directions, and let p denote themain. Various strategies have been developed for over-
pressure; then in the domain V 5 R 3 [0, L] \Vi u, v, andcoming the difficulty [1]. It is a popular method in the
p satisfy the N–S equations.engineering literature to introduce an artificial boundary

reducing these problems to a bounded computational do-
main and to set up artificial boundary conditions at the

u
­u
­x

1 v
­u
­y

1
­p
­x

5 n Du, (2.1)artificial boundary. How to design artificial boundary con-
ditions on the artificial boundary for a given problem has
been a common interest for mathematicians and engineers. u

­v
­x

1 v
­v
­y

1
­p
­y

5 n Dv, (2.2)
In the past 10 years, many authors have worked in this
direction. For example, Goldstein [2], Feng [3], Han and
Wu [4, 5], Hagstrom and Keller [6, 7], Halpern and Schatz-

­u
­x

1
­v
­y

5 0 (2.3)
man [8, 9], Han et al. [10], Han and Bao [11, 12], and Nataf
[13] worked on this subject for various problems using

and the boundary conditionsdifferent techniques. In [6, 7], the authors proposed a
method by which to derive asymptotic boundary conditions

uuy50,L 5 vuy50,L 5 0, 2y , x , 1 y, (2.4)

* This work was supported by the Climbing Program of National Key uu­Vi
5 vu­Vi

5 0, (2.5)
Projects of Foundation and Doctoral Programs foundation of the Institu-
tion of Higher Education. u(x, y) R uy( y) 5 4ay(L 2 y)/L2,
Computation was supported by the State Key Laboratory of Scientific

and Engineering Computing. v(x, y) R vy 5 0, when x R 6y, (2.6)
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TABLE I TABLE II

Re 5 20, c 5 d 5 3.0 Re 5 50, c 5 d 5 3.0

Errors i 5 I i 5 II i 5 IIIErrors i 5 I i 5 II i 5 III

err(gE 2 gi)(d) 0.1892 0.1125 1.4529 3 1023 err(gE 2 gi)(d) 0.5501 0.2442 1.3080 3 1022

err(cE 2 ci)(d) 2.0178 3 1022 9.4361 3 1023 4.4893 3 1024err(cE 2 ci)(d) 4.3653 3 1023 5.2035 3 1023 5.1546 3 1025

c(x, y) R cy( y) ; Ey

0
uy(s) ds,

where n . 0 is the kinematic viscosity, and a . 0 is a con-
stant.

g(x, y) R gy( y) ; 2u9y( y), when x R 6y. (2.13)We introduce the streamfunction c and vorticity g; then

We take two constants b , c, such that Vi , (b, c) 3

(0, L); then V is divided into three parts, Vb , VT , and Vc ,­c

­y
5 u,

­c

­x
5 2 v, (2.7)

by the artifical boundaries Gb and Gc with

g 5
­v
­x

2
­u
­y

. (2.8) Gb 5 h(x, y) u x 5 b, 0 # y # Lj,

Gc 5 h(x, y) u x 5 c, 0 # y # Lj,
Thus the problem (2.1)–(2.6) is equivalent to the problem Vb 5 h(x, y) u 2y , x , b, 0 , y , Lj,

VT 5 h(x, y) u b , x , c, 0 , y , Lj \Vi ,­c

­y
­g
­x

2
­c

­x
­g
­y

2 n Dg 5 0, in V, (2.9)
Vc 5 h(x, y) u c , x , 1y, 0 , y , Lj.

Dc 1 g 5 0, in V, (2.10) When ubu, c are sufficiently large, in the domain Vb< Vc

the flow is almost a Poiseuille flow. So the nonlinear N–S
cuy50 5

­c

­y
uy50,L 5 0, cuy5L 5 cL equations (2.9), (2.10) can be linearized; namely, in the

domain Vc (and Vb) the solution g and c of the problem
(2.9)–(2.13) approximately satisfies the problem; EL

0
uy(s) ds, 2y , x , 1y, (2.11)

cu­Vi
5 constant,

­c

­n
u­Vi

5 0, (2.12) Dg 2 uy( y)Re
­g
­x

2 u0y( y)Re
­c

­x
5 0, in Vc , (2.14)

FIG. 1. (a) Streamfunction, exact solution; (b) vorticity, exact solution.
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FIG. 2. Re 5 20, c 5 d 5 3.0: (a) cE 2 ci ; (b) gE 2 gi .

Dc 1 g 5 0, in Vc , (2.15) g̃(x, y) 5 g(x, y) 2 gy( y),

c̃(x, y) 5 c(x, y) 2 cy( y).cuy50 5
­c

­y
uy50,L 5 0, cuy5L 5 cL , c # x , 1y,

(2.16) Since cy( y) is a polynomial of degree three, gy( y) is a
polynomial of degree one and c0y( y) 1 gy( y) 5 0, so itc(x, y) R cy( y), g(x, y) R gy( y), when x R 1y,
is straightforward to check that g̃ and c̃ satisfy the equa-(2.17)
tions (2.14), (2.15) and the boundary conditions

where Re 5 1/n. Let

c̃uy50,L 5
­c̃

­y
uy50,L 5 0, c # x , 1y, (2.18)

TABLE III
c̃(x, y) R 0, g̃(x, y) R 0, when x R 1y. (2.19)Re 5 100, c 5 d 5 3.0

Errors i 5 I i 5 II i 5 III Since the boundary condition on the artificial boundary Gc

is unknown, the equations (2.14) and (2.15) with boundary
err(gE 2 gi)(d) 2.3946 0.3422 5.2694 3 1022

conditions (2.18) and (2.19) are an incompletely posederr(cE 2 ci)(d) 5.5058 3 1022 7.0047 3 1023 1.8079 3 1023

problem. It cannot be solved. Let
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FIG. 3. Re 5 50, c 5 d 5 3.0: (a) cE 2 ci ; (b) gE 2 gi .

c̃(x, y)ux5c 5 c̃c( y), g̃(x, y)ux5c 5 g̃c( y), 0 # y # L. g̃(x, y) 5 a( y)e2l(x2c)/L

(2.20)
c̃(x, y) 5 b( y)e2l(x2c)/L

For given functions c̃c( y) and g̃c( y) with c̃c(0) 5
is a nonzero solution of the problem (2.14), (2.15), (2.18),c̃c(L) 5 0 and (dc̃c( y)/dy)uy50,L 5 0, we discuss the solution
(2.19). Then we know that the constant l and the nonzeroof the equations (2.14) and (2.15) with the boundary condi-
functions a( y) and b( y) are a solution of the eigenvaluetions (2.18)–(2.20) and design a sequence of artificial
problemboundary conditions on the segment Gc for the problem

(2.9)–(2.13).
4

L2 l2a( y) 1 a0( y) 2
2lRe

L
uy( y)a( y)

3. ARTIFICIAL BOUNDARY CONDITIONS

2
2lRe

L
u0y( y)b( y) 5 0, (3.1)

We now solve the equations (2.14) and (2.15) with the
boundary conditions (2.18)–(2.20) by spectral techniques 4

L2 l2b( y) 1 b0( y) 1 a( y) 5 0, 0 , y , L, (3.2)and then design a sequence of approximate artificial
boundary conditions on the segment Gc for the problem
(2.9)–(2.13). Suppose b( y)uy50,L 5 b9( y)uy50,L 5 0, (3.3)
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FIG. 4. Re 5 100, c 5 d 5 3.0: (a) cE 2 ci ; (b) gE 2 gi .

Reall , 0, (3.4) l2ã(t) 1 ã0(t) 2
LlRe

2
ũy(t)ã(t)

where Reall denotes the real part of l. Let y 5L(t 1 1)/ 2
LlRe

2
ũ0y(t)b̃(t) 5 0, (3.5)

2 and

l2b̃(t) 1 b̃0(t) 1 ã(t) 5 0, 21 , t , 1, (3.6)

b̃(t)ut561 5 b̃9(t)ut561 5 0, (3.7)ã(t) 5
L2

4
a( y) 5

L2

4
a SL(t 1 1)

2 D ,

Reall , 0. (3.8)

b̃(t) 5 b( y) 5 b SL(t 1 1)
2 D , 21 # t # 1, 0 # y # L, In the following we solve the problem (3.5)–(3.8) by

the spectral Chebyshev Tau method [14]. First we give an
equivalent form of the boundary condition (3.7). We haveũy(t) 5 uy( y) 5 uy SL(t 1 1)

2 D5 a(1 2 t2).
the following theorem.

THEOREM. The boundary conditions b̃(t)ut561 5
b̃9(t)ut561 5 0 are equivalent to b̃(t)ut561 5 0 and e1

21 ãh dtThen we obtain
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TABLE IV TABLE VI

Re 5 20, d 5 2.5 Re 5 100, d 5 2.5

c 2.5 3.0 3.5c 2.5 3.0 3.5

err(gE 2 gIII)(d) 9.0981 3 1023 1.5865 3 1024 2.0587 3 1025 err(gE 2 gIII)(d) 0.5073 2.0992 3 1022 1.3615 3 1022

err(cE 2 cIII)(d) 2.3621 3 1022 8.8396 3 1024 5.7431 3 1024err(cE 2 cIII)(d) 2.0359 3 1024 6.8568 3 1026 9.3753 3 1027

5 2l2 e1

21 b̃h dt for any h [ P1(21, 1) if ã(t), b̃(t) satisfy where Tj(t) is the jth Chebyshev polynomial and N is even.
the equation l2b̃(t) 1 b̃0(t) 1 ã(t) 5 0 on (21, 1). A computation shows that

Proof. For any function h(t) [ P1(21, 1),

l2ak 1
1
ck

ON
p5k12

p1k even

p(p2 2 k2)ap 2
aLlRe

2 ON
p50

cpkapE1

21
ã(t)h(t) dt 5 2E1

21
[l2b̃(t) 1 b̃0(t)]h(t) dt

1 aLRelbk 5 0,
5 2l2 E1

21
b̃h dt 2 E1

21
b̃0h dt

k 5 0, 1, ..., N 2 2, (3.11)

5 2l2 E1

21
b̃h dt 2 E1

21
[b̃0h 2 h0b̃] dt

l2bk 1
1
ck

ON
p5k12

p1k even

p(p2 2 k2)bp 1 ak 5 0, k 5 0, 1, ..., N 2 2,

5 2l2 E1

21
b̃h dt 2 [b̃9h 2 h9b̃]u121 ,

(3.12)

since [b̃h9 2 hb̃9]u121 5 0 for any h [ P1(1, 21) if and only and
if b̃(1) 2 b̃(21) 2 b̃9(1) 2 b̃9(21) 5 0 and b̃9(1) 2
b̃9(21) 5 0. When this is combined with b̃(t)ut561 5 0, the ON

j50
j even

bj 5 ON
j51

j odd

bj 5 0, (3.13)theorem is completed.
Therefore the boundary condition (3.7) can by re-

placed by

ON
j50

j even

aj

j2 2 1
5 2l2 ON

j50
j even

bj

j2 2 1
and

b̃(t)ut561 5 0, (3.9)

E1

21
ã(t) dt 5 2l2 E1

21
b̃(t) dt and ON

j51
j odd

aj

j2 2 4
5 2l2 ON

j51
j odd

bj

j2 2 4
, (3.14)

E1

21
tã(t) dt 5 2l2 E1

21
tb̃(t) dt. (3.10)

where
Now we discretize the problem (3.5), (3.6), (3.9), (3.10)

by the spectral Chebyshev Tau method [14]. Let

ck 5H2, k50,

1, k51,2, ...,N,ãN(t) 5 On
j50

ajTj(t),

cjk 5HAf [ckdj,k 2 Asd2, j1k 2 Asd2,u j2ku], 0# j#N21,0#k#N,

0, j5N21,N,0#k#N,b̃N(t) 5 ON
j50

bjTj(T),

and

TABLE V

Re 5 50, d 5 2.5 dj,k 5H1, j 5 k,

0, j ? k.
c 2.5 3.0 3.5

Let
err(gE 2 gIII)(d) 1.4283 3 1022 4.8064 3 1023 1.6527 3 1023

err(cE 2 cIII)(d) 2.2518 3 1024 2.0739 3 1024 6.9529 3 1025

X 5 [a0 , a1 , ..., aN22 , b0 , b1 , ..., bN22]T.
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FIG. 5. Re 5 20, d 5 2.5: (a) cE 2 cIII ; (b) gE 2 giii .

Then the problem (3.11)–(3.14) is equivalent to the eigen- the corresponding eigenvectors of the eigenvalue problem
(3.16). We can compute all the eigenvalues with negativevalue problem
real part by numerical methods. Therefore we assume that
the eigenvalues of problem (3.16) with negative real partl2X 1 lA0X 1 B0X 5 0, (3.15)
are l1 , l2 , ..., lK , and the corresponding eigenvectors are
j1 , j2 , ..., jK . Furthermore we suppose that Realli $whereA0 and B0 are (2N 2 2) 3 (2N 2 2) matrices. Let
Realli11 (1 # i # K 2 1) and ji 5 (j1,i , j2,i , ..., j2N22,i)T

(1 # i # K). We now design a sequence of approximateY 5 lX.
artificial boundary conditions on the segment Gc using l1 ,
l2 , ..., lK and j1 , j2 , ..., jK . We introduce hg

i 5 (hg
1,i , ...,

Then (3.15) is reduced to the standard eigenvalue problem hg
N11,i)T and hc

i 5 (hc
1,i , ..., hc

N11,i)
T [ RN11 (1 # i # K), with

S0 I2N22

2B0 2A0
D SX

Y
D5 l SX

Y
D , (3.16)

hc
j,i 5 5

jN211j,i, 1 # j # N 2 1,

2 ON22

l51
l odd

jN211l,i , j 5 N,

2 ON22

l50
l even

jN211l,i , j 5 N 1 1,

where I2N22 is a (2N 2 2) 3 (2N 2 2) unit matrix.
From the condition (3.4), the real part of l must be

negative, so to solve the problem (3.1)–(3.4), we need only
to calculate the eigenvalues with negative real part and
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FIG. 6. Re 5 50, d 5 2.5: (a) cE 2 cIII ; (b) gE 2 giii .

g̃M(x, y) 5 OM
i51

digg
i (x, y), (3.17)

c̃M(x, y) 5 OM
i51

dig
c
i (x, y), (3.18)

wherehg
j,i 5 5

jj,i , 1 # j # N 2 1,

2 ON22

l51
l odd

F(N 2 1)2 2 4
l2 2 4

jl,i

1
(N 2 1)2 2 l2

l2 2 4
l2

i jN211l,iG , j 5 N,

2 ON22

l50
l even

FN 2 2 1
l2 2 1

jl,i

1
N 2 2 l2

l2 2 1
l2

i jN211l,iG , j 5 N 1 1.

gg
i (x, y)

5
4

L2 5
e2li(x2c)/L ai S2y

L
2 1D , li real,

Real Fe2li(x2c)/L ai S2y
L

2 1DG , Imagli ? 0, li 5 li11 ,

Imag Fe2li(x2c)/L ai S2y
L

2 1DG , Imagli ? 0, li ? li11

Thus ai(t) 5 oN
j50 hg

j11,iTj(t) and bi(t) 5 oN
j50hc

j11,iTj(t) are
approximate eigenfunctions of the eigenvalues li of the
problem (3.5)–(3.8). Suppose M [ ℵ and M # K. Let
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and

2 FEL

0
w( y)gy( y) ? g1( y) dy, ...,

gc
i (x, y)

EL

0
w( y)gy( y) ? gM( y) dyGT

,

5 5
e2li(x2c)/L bi S2y

L
2 1D , li real,

Real Fe2li(x2c)/L bi S2y
L

2 1DG , Imagli ? 0, li 5 li11 ,

Imag Fe2li(x2c/L bi S2y
L

2 1DG , Imagli ? 0, li ? li11 ,

and

D 51E
L

0
w(y)g1(y) ? g1(y) dy . . . EL

0
w(y)gM(y) ? g1(y) dy

. . .
.
.
.

. . .

EL

0
w(y)g1(y)gM(y) ? dy . . . EL

0
w(y)gM(y) ? gM(y) dy2.

where Imag(s) denotes the imaginary part of s and l de-
notes conjugation of l.

Therefore g̃M(x, y) and c̃M(x, y) satisfy the equations
(2.14)–(2.15) and boundary conditions (2.18)–(2.19) ap-
proximately for any constants d1 , d2 , ..., dM . We introduce Differentiating (3.17) and (3.18) and let x 5 c, we obtain

­WM(c, y)
­x

5
­W̃M(c, y)

­x
gi( y) 5Sgg

i (c, y)

gc
i (c, y)

D , 1 # i # M, gy( y) 5Sgy( y)

cy( y)
D ,

5 OM
i51

hi( y) di

(3.22)WM(x, y) 5SgM(x, y)

cM(x, y)
D , W̃M(x, y) 5Sg̃M(x, y)

c̃M(x, y)
D .

5 (h1( y), ..., hM( y))D21r

Hence we have ; p
c

M

(g, c) 1 # M # K,

W̃M(c, y) 5 OM
i51

digi( y), (3.19)
where

WM(c, y) 5 W̃M(c, y) 1 gy( y). (3.20)

Suppose w( y) 5 1/Ï1 2 (2y/L 2 1)2 is the Chebyshev hi( y) 51
­gg

i (c, y)
­x

­gc
i (c, y)
­x

2 , 1 # i # M.
weight function on the interval [0, L]. Then we obtain

d 5 D21r, (3.21)

Therefore we obtain a sequence of approximate artificial
boundary conditions (3.22) on the segment artificial bound-where
ary Gc.

In a similar way, we can get the artificial boundary condi-d 5 [d1 , d2 , ..., dM]T,
tions on the boundary Gb .

Then on the domain VT the original problem (2.9)–(2.13)r 5 FEL

0
w( y)W̃M(c, y) ? g1( y) dy, ...,

can be approximated by the following problem with differ-
ent M:

EL

0
w( y)W̃M(c, y) ? gM( y) dyGT

­c

­y
­g
­x

2
­c

­x
­g
­y

2 n Dg 5 0, in VT , (3.23)

Dc 1 g 5 0, in VT , (3.24)
5 FEL

0
w( y)WM(c, y) ? g1( y) dy, ...,

cU
y50

5
­c

­y U
y50,L

5 0, cuy5L 5 cL , b # x # c,

EL

0
w( y)WM(c, y) ? gM( y) dyGT

(3.25)
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FIG. 7. Re 5 100, d 5 2.5: (a) cE 2 cIII ; (b) gE 2 giii .

EXAMPLE [Backward-Facing Step Flow]. The bounded
cu­Vi

5 constant,
­c

­n U
­Vi

5 0, (3.26) computational domain is given by

cuGb
5 cy( y), guGb

5 gy( y), (3.27) VT 5 H(x, y) u b , x # b 1
L
2

,
L
2

, y , L;

b 1
L
2

, x , c, 0 , y , LJ .1
­g
­x

­c

­x
2 UGc

5 p
c

M

(g, c). (3.28)

Then the inflow condition at the boundary Gb 5 h(x, y) u
x 5 b, L/2 # y # Lj is given by

4. NUMERICAL IMPLEMENTATION AND RESULTS
g(b, y) 5

16a
L2 (4y 2 3L),

In this section we consider the numerical solution of the
original problem (2.9)–(2.13) on the given computational

c(b, y) 5
8a

3L2 Sy 2
L
2D2

(5L 2 4y).
domain VT . This steady state solution is computed as the
limit in time of the unsteady N–S equations, which are
discretized by an ADI method [15]. Thus cy( y) and gy( y) are given by
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TABLE VII TABLE IX

Re 5 20, c 5 d 5 3.0 Re 5 100, c 5 d 5 3.0

M 2 4 6M 0 1 2

err(gE 2 gIII)(d) 0.1125 1.0865 3 1022 1.4529 3 1023 err(gE 2 gIII)(d) 0.3643 6.5859 3 1022 5.2694 3 1022

err(cE 2 cIII)(d) 1.8544 3 1022 2.8569 3 1023 1.8079 3 1023err(cE 2 cIII)(d) 5.2035 3 1023 5.6575 3 1024 5.1546 3 1025

gy( y) 5
4a
L2 (2y 2 L), err( fE 2 f̃i)(d) 5 !OJ

j50
[ fE(d, yj) 2 f̃i(d, yi)]2.

cy( y) 5
4a
L2 y2 SL

2
2

y
3D .

Then the errors err(gE 2 gi)(d) and err(cE 2 ci)(d) are
given in Tables I–III for Re 5 20, 50, and 100. Further-
more the errors gE 2 gi and cE 2 ci on the segment Gdwe take b 5 0.0, a 5 1.0, L 5 1.0.
are shown in Figs. 2–4.To test the artificial boundary conditions, we made three

Tables I–III and Figs. 2–4 show the artificial boundarytypes of computation using different types of outflow
condition presented in this paper to be more accurate thanboundary conditions at artificial boundary Gc in the ex-
the Neumann and Dirichlet boundary conditions, whichample.
are often used in the engineering literature.

Type I. Dirichlet boundary condition The influence of the location of the artificial boundary
Gc is shown in Tables IV–VI and in Figs. 5–7 for different

c(c, y) 5 cy( y), g(c, y) 5 gy( y), 0 # y # L; Reynolds numbers. The location of the artificial boundary
has strong influence for the computational accuracy, spe-

Type II. Neumann boundary condition cially for high Reynolds number. The influence of the num-
ber M in the artificial boundary condition (3.22) is shown
in Tables VII–IX for different Reynolds numbers.­c

­x
(c, y) 5 0,

­g
­x

(c, y) 5 0, 0 # y # L;

5. CONCLUSIONS
Type III. Artificial boundary condition (3.22).

A sequence of approximate artificial boundary condi-In the example, the results are compared with an ‘‘exact
tions for nonlinear Navier–Stokes equations has beensolution.’’ This solution is obtained by using an outflow
designed using an external linear flow and the spectralboundary very far from the step, at which are presented
Chebyshev Tau method. The artificial boundary conditionsNeumann boundary condition. To be precise, the distance
can be used to solve nonlinear N–S equations even thoughbetween the step and the outflow boundary for the ‘‘exact
it is obtained from linearized N–S equations on an externalsolution’’ is 14 times the height of the step.
domain. From the numerical results, we can see that ourLet (cE , gE) denote the ‘‘exact solution’’ and (ci , gi)
artificial boundary condition is more accurate than the(i 5 I, II, III) denote the numerical solutions corresponding
Neumann and Dirichlet boundary conditions which arethe boundary conditions type I, II, and III on the artificial
often used in the engineering literature. For a given accu-boundary Gc . Figure 1 shows the ‘‘exact solution’’ for
racy it is possible to compute the problem on a smallerRe 5 100. The error gE(d, y) 2 gi(d, y), cE(d, y) 2
computational domain using our artificial boundary condi-ci(d, y) on the segment Gd 5 h(x, y) u x 5 d, 0 # y # Lj
tion; thus it saves computing time. The numerical resultsis given. Let
show that the location of the artificial boundary depends
on the Reynolds number Re.
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