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In this paper the numerical simulation of the steady incompress-
ible viscous flow in a no-slip channel is considered. A sequence
of approximate nonlocal artificial boundary conditions on a given
segment artificial boundary is derived by a system of linearized
Navier—Stokes equations and spectral techniques. Then the original
problem is reduced to a boundary value problem in a bounded
computational domain. The numerical examples show that these
artificial boundary conditions are very effective and are also more
accurate than Dirichlet and Neumann boundary conditions, which
are often used in the engineering literature. © 1996 Academic Press, Inc.

1. INTRODUCTION

Many problems arising in fluid flow lead to the resolution
of a system of partial differential equations in an un-
bounded domain. For instance, for steady state incom-
pressible viscous flow in a channel, the resolution of Na-
vier—Stokes (N-S) equations in an unbounded domain is
proposed. One difficulty in the numerical simulations of
these problems is the unboundedness of the physical do-
main. Various strategies have been developed for over-
coming the difficulty [1]. It is a popular method in the
engineering literature to introduce an artificial boundary
reducing these problems to a bounded computational do-
main and to set up artificial boundary conditions at the
artificial boundary. How to design artificial boundary con-
ditions on the artificial boundary for a given problem has
been a common interest for mathematicians and engineers.
In the past 10 years, many authors have worked in this
direction. For example, Goldstein [2], Feng [3], Han and
Wu [4, 5], Hagstrom and Keller [6, 7], Halpern and Schatz-
man [8, 9], Han et al. [10], Han and Bao [11, 12], and Nataf
[13] worked on this subject for various problems using
different techniques. In [6, 7], the authors proposed a
method by which to derive asymptotic boundary conditions
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for linear partial differential equations in cylinders, which
was applied to solve some nonlinear problems.

The purpose of this paper is to design nonlocal artificial
boundary conditions for steady incompressible viscous flow
in the vorticity streamfunction formulation in the case
when the domain is a no-slip channel. We introduce two-
segment artificial boundaries in the physical domain. The
spectral Chebyshev Tau method [14] is used to design the
artificial boundary condition. Then the original problem is
reduced to a problem on a bounded computational domain.
Finally numerical examples show that the artificial bound-
ary conditions given in this paper are very effective.

2. NAVIER-STOKES EQUATIONS
AND THEIR LINEARIZATION

Throughout this paper we consider the numerical simu-
lation of a steady incompressible viscous flow around a
body (domain ();) in a no-slip channel defined by R X
[0, L]. Let u, v denote the components of the velocity in
the x and y coordinate directions, and let p denote the
pressure; then in the domain Q = 3 X [0, L\Q; u, v, and
p satisfy the N-S equations.

ua—u+va—u+—p=vAu, (2.1)

0x Jdy  0x

v ov | dp
—+tuv—+--=vA 22
Yax T Vay oy UOU 22)
LU 2.3)

dx dy

and the boundary conditions
u|y:O,L:v|y:0,L:0’ —o <x <+ oo, (24)
u|aﬂi = U|aﬂi =0, (2.5)
u(x,y) = u.(y) = 4ay(L — y)/ L2,

v(x,y)— v, =0, whenx— oo, (2.6)
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TABLE I
Re =20,c=d = 3.0

TABLE II
Re =50,c=d = 3.0

Errors i=1 i=1I i=1II Errors i=1 i =11 i=1II
err(wg — ;)(d) 0.1892 0.1125 1.4529 X 1072 err(wg — ;)(d) 0.5501 0.2442 1.3080 X 1072
err(Ye — ¢;)(d) 43653 x 1073 5.2035 X 1073 5.1546 X 107°  err(¢r — ¥)(d) 2.0178 X 1072 9.4361 X 1073 4.4893 x 107*

where v > 0 is the kinematic viscosity, and a > 0 is a con-
stant.
We introduce the streamfunction s and vorticity w; then

W_ u, W_ v, 2.7)
ay 0x
oo
W= iy’ (2.8)

Thus the problem (2.1)—(2.6) is equivalent to the problem

in Q, (2.9)

Ay+w=0, inQ, (2.10)

d
lp|y:0 = 8_‘}6’ |y:0.L =0, (r[/|y:L =i

P, y) = () = [ as) ds,
o(x,y) = w.(y) = —us(y),whenx — *oo. (2.13)
We take two constants b < ¢, such that Q; C (b, ¢) X

(0, L); then () is divided into three parts, €);,, Q7, and Q.,
by the artifical boundaries I', and T". with

[,={(x,y)|x=b,0=y=1L},
Te={(x,y)[x
Q,={(x,y)| —0 <x<b,0<y<L}
Qr={(x,y)|b<x<c,0<y<LhQ,
Q. ={(x,y)|c<x<+4+»,0<y<L}

c,0=y=1L},

When |b|, ¢ are sufficiently large, in the domain Q,U Q.
the flow is almost a Poiseuille flow. So the nonlinear N-S
equations (2.9), (2.10) can be linearized; namely, in the
domain ), (and () the solution w and ¢ of the problem

= L)L u.(s)ds, —oo<x<-+ow, (2.11) (2.9)—(2.13) approximately satisfies the problem
|s0, = constant, % s, = 0, (2.12) Aw — u..(y)Re do _ u’(y)Re W_0 in Q., (214)
i an i ox E)x ’ ’
a
8:47386-

1.6846

FIG. 1.

(a) Streamfunction, exact solution; (b) vorticity, exact solution.
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AY+w=0, inQ, (2.15)

J
¢|y:0 = a_‘f |y:0,L = 07 l//|y:L = lpL’ c=x< —}—OO,
(2.16)

w(X,Y)*wm(y), when x — + oo,

b(x,y) = (),

(2.17)
where Re = 1/v. Let
TABLE III
Re =100,c =d = 3.0
Errors i=1 i =11 i =111
err(wg — w;)(d)  2.3946 0.3422 52694 X 1072
err(ye — ¢)(d) 55058 X 102 7.0047 X 10> 1.8079 x 1073

G)(X,y) = w(x’y) - ww()’),
Pl(x,y) = P(x,y) — il y).

Since ..(y) is a polynomial of degree three, w.(y) is a
polynomial of degree one and % (y) + w.(y) = 0, so it
is straightforward to check that & and i satisfy the equa-
tions (2.14), (2.15) and the boundary conditions

~ d
l,[/|y=0,L =

o (2.18)

¢|y=0,L=Os c=x<+tox,
#(x,y) =0, @(x,y)—0, whenx— +o. (2.19)

Since the boundary condition on the artificial boundary I',
is unknown, the equations (2.14) and (2.15) with boundary
conditions (2.18) and (2.19) are an incompletely posed
problem. It cannot be solved. Let
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FIG.3. Re =50,c=d =3.0: (a) ¢ — ¥; (b) wr — .

@(x’y)|.x:(): l}L(.Y)’ G)(x’.)))|x:(;:6)(;(y)’ OSySL
(2.20)

For given functions ¢.(y) and &.(y) with ¢.(0) =
J.(L) = 0and (d¢.(y)/dy)|,-o.r = 0, we discuss the solution
of the equations (2.14) and (2.15) with the boundary condi-
tions (2.18)—(2.20) and design a sequence of artificial
boundary conditions on the segment I'. for the problem
(2.9)-(2.13).

3. ARTIFICIAL BOUNDARY CONDITIONS

We now solve the equations (2.14) and (2.15) with the
boundary conditions (2.18)—(2.20) by spectral techniques
and then design a sequence of approximate artificial
boundary conditions on the segment I'. for the problem
(2.9)-(2.13). Suppose

2A(x—c)/L

®(x,y) = a(y)e
Plx,y) = B(y)e 't
is a nonzero solution of the problem (2.14), (2.15), (2.18),
(2.19). Then we know that the constant A and the nonzero

functions a(y) and B(y) are a solution of the eigenvalue
problem

2ARe

L ay) + () - 2R w(a(y)
- 2R (B =0, G1)

% NB(y) +B'(y) +a(y) =0, 0<y<L, (32)

B(y)|y:O,L = B,(y)|y:0,L = 0’ (33)
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FIG.4. Re = 100,¢c =d = 3.0: (a) Y& — ¢i; (b) wg — ;.

Reall <0, (34) Na(r) + a&'(t) — um(t)a(z)
_ L)\Re ar
where Real) denotes the real part of A. Let y =L(¢ + 1)/ " (OB(t) = (3.5)
2 and
NB(t) +B'(t) +a() =0, —1<t<1, (3.6)
2 ~ ~
w0 - an - La(H1D), ALt =B Ol =0, 67)
Realx <0. (3.8)
_ Le+1))
B = B(y) = B( > , Tl=t=10=y=1, In the following we solve the problem (3.5)-(3.8) by

the spectral Chebyshev Tau method [14]. First we give an
() = 1. (y) = . (L(t + 1)> = a(1 - ). equivalent. form of the boundary condition (3.7). We have
2 the following theorem.

Tueorem. The boundary conditions ,8(t)|,-+1 =
Then we obtain B'(£)|;=+1 = 0 are equivalent to B(t)|,-~; = 0 and f am dt
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TABLE IV
Re =20,d =25

TABLE VI
Re =100,d =25
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¢ 25 3.0 35 ¢ 25 3.0 35
err(wg — om)(d)  9.0981 X 103 1.5865 X 10 2.0587 X 105 err(wg — wm)(d)  0.5073 2.0992 X 102 1.3615 X 102
err(fe — Yu)(d) 20359 X 1074 68568 X 10° 93753 X 107 err(yr — gan)(d)  2.3621 X 102 8.8396 X 104 57431 x 10

= —X2 1, Bndt for any n € Pi(~1,1) if a(r). B(r) satisty
the equation A%B(¢) + B"(¢) + &) = 0 on (—1, 1).

Proof. For any function 7(f) € Py(—1, 1),

[' atm@ ac=~[" ¥B© + B @) dr

-2 jil Bndt — Jil B’ dt

-\ ﬁl Bm dt — ﬁl [B'n — 7'B] dt

% [ Bodi—[Bn— 0B,

since [Bn’ — mB']|'1 = 0 for any n € P;(1, —1) if and only
it B(1) — B(-1) - B'(1) — B(~1) = 0 and F'(1) —
B'(—=1) = 0. When this is combined with B(7)|,-; = 0, the
theorem is completed.

Therefore the boundary condition (3.7) can by re-
placed by

B(®)i=1 =0, (3.9)
ﬁl a(t) dt=—2? ﬁl B(t) dt and
[' awyar=—x[' B (3.10)

Now we discretize the problem (3.5), (3.6), (3.9), (3.10)
by the spectral Chebyshev Tau method [14]. Let

&Mﬂ=g%2@,

Bn(t) = 2} b Ti(T),

TABLE V
Re = 50,d =25

¢ 25 3.0 35
err(wg — om)(d) 14283 X 102 4.8064 X 103 1.6527 x 107
err(Y — Yan)(d) 22518 X 104 20739 x 104 6.9529 X 1075

where T;(¢) is the jth Chebyshev polynomial and N is even.

A computation shows that

N
Kag+ = > pp - K)a, - HIRE
Ck  p=k+2 2
ptkeven
+ alLReAb, =0,

k=0,1,.,N—2,

N
E YpkQp
p=0

(3.11)

(3.12)

(3.13)

(3.14)

N
A2, +L > p(p*— k)b, +a,=0,k=0,1,..,N—2,
Ck  p=k+2
p+keven
and
N N
2 b;= 2 b; =0,
=0 j=1
jeven jodd
N a N
(A 2 J
=—A
120 -1 ]20 *-1
jeven jeven
N g N b
. f) — _)\2 - J ,
,21 P-4 /El P-4
jodd jodd
where

2, k=0,
Cr =
1. k=1.2...N,

{%[cka,-,k—%az,,-+k—%az,|,-_k], 0=<j=N-1,0=k=N,
'y, =
o, j=N—1,N,0=k=N,

and

j=k,
j# k.

1,
Ok = 0,

X: [a09al’ ceey aN*27b0,b17

Let

byl
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Then the problem (3.11)—(3.14) is equivalent to the eigen-
value problem

AZX + AA()X"‘ B()X = O, (315)
whereAq and By are (2N — 2) X (2N — 2) matrices. Let
Y = AX.

Then (3.15) is reduced to the standard eigenvalue problem

L ) 6) ()

-B, —-A,/) \Y I

where Ly is a (2N — 2) X (2N — 2) unit matrix.
From the condition (3.4), the real part of A must be

negative, so to solve the problem (3.1)-(3.4), we need only
to calculate the eigenvalues with negative real part and

(3.16)

the corresponding eigenvectors of the eigenvalue problem
(3.16). We can compute all the eigenvalues with negative
real part by numerical methods. Therefore we assume that
the eigenvalues of problem (3.16) with negative real part
are Ay, Ay, ..., Ak, and the corresponding eigenvectors are
&, &, ..., &k. Furthermore we suppose that Real); =
Reald (1 =i =K — 1) and & = (&, & - Env2i)'
(1 =i = K). We now design a sequence of approximate
artificial boundary conditions on the segment I'. using A,
Ao, ey Ag and &, &, ..., &¢. We introduce n¢ = (9%, ...,
Ne1) " and nf = (07, oy My )T E RV (1 =i = K), with
(

En-14)is l=j=N-1,

N-2
- E gN*l+[,i? ] = N9
=1

lodd

N-2

- 2 gN—l*—l,[’

=0
\ leven

j=N+1,
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N
Thus ai(l‘) = 2]‘:0 ’Y]}‘X)Jrl’i]}(t) and Bl(t) = 2]':07]]'!@1’,‘7}(0 are
approximate eigenfunctions of the eigenvalues A; of the
problem (3.5)—(3.8). Suppose M € 00 and M < K. Let

-0=25
—¢=30
~0=35

\

\_/
| 1 y
06 08 1
Yur; (b) g — o

where

gr(x,y)

éZ)M(xa y) = ; dig;’u(xa y)? (317)
I (x, y) = ; dig!(x,y), (3.18)

p
ML o <2fy _ ) , A; real,

Real [e”i("’f)“ o <2L_y - )} , Imagh;#0, ) = At

Imag |:€2/\'(X7L.)/L o; <2L_y - >j| s Imag)t,- # O, A # /_\Hl
\
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and

g7 (x,y)
( 2y
2M(x=¢c)/L 3. _
Sy (L ) :

= { Real [e”f(x‘c)“ B; <2fy - 1)} , Imagh; #0, A = Aiyq,

A;real,

Imag [ezAt(""/L Bi <2fy — 1)} , Imagh, # 0, A # Ay
\

where Imag(s) denotes the imaginary part of s and A de-
notes conjugation of A.

Therefore @, (x, y) and 9y, (x, y) satisfy the equations
(2.14)—(2.15) and boundary conditions (2.18)—(2.19) ap-
proximately for any constants d,, d,, ..., dy;. We introduce

gi(y) = (gi my)) A=i=M,g.(y) = (m(y)) ,

gl(c,y) o y)
wM(x7y)) ~ <G)M(X7Y)>

WM X, = , WM X, = .
(x,y) <¢M(x’y) (x,y) Tar(. )

Hence we have

WM(C» y) = ; digi(y), (3.19)

Wale,y) = Wyle,y) + g-(). (3.20)

Suppose w(y) = 1/V1 — (2y/L — 1)? is the Chebyshev

weight function on the interval [0, L]. Then we obtain
d=D7"r, (3.21)

where
d=[di,dy,...,du]",

" |:f(l; w())Wu(c,y) gi(y) dy, ...,
J(? w(N)Wylc,y) - gu(y) dy]
- [Jé w(Y)Wule,y)-g1(y) dy, ...,

[EwWaten) suln as |

- [JOL w(y)g-(y) - &1(y) dy, ...,
[ w()-(9) - gu() dy]T,

and

f(fW(y)gl(y)-gl(y)dy fé w(y)gm(y) - &1 (y) dy

fs w(y)gi(V)gm(y) ~dy ... f§ w(y)gm(y) - gu(y) dy

Differentiating (3.17) and (3.18) and let x = ¢, we obtain

IWy(e,y) _ aWnlc,y)
ox ox

S

iy hi(y) d;

—_

(3.22)

(hi(y), ooy A (y))D'r

[[(o.9) 1=M=K,
M
where

agy(c,y)
hi( y) a 1=i=M
(y) = , 1=i=
Y agl(c,y)
0x

Therefore we obtain a sequence of approximate artificial
boundary conditions (3.22) on the segment artificial bound-
ary I..

In a similar way, we can get the artificial boundary condi-
tions on the boundary I';.

Then on the domain () the original problem (2.9)—(2.13)
can be approximated by the following problem with differ-
ent M:

@a - 55 - A(U = O’ m QT! (3'23)
Mp+w=0, inQ;  (324)
)
dl :a—l// :0, ¢/|y:L:¢IL, beSC,
y=0 Y y=0,L

(3.25)
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B ExawmpLE [Backward-Facing Step Flow]. The bounded
Y|, = constant, ml 0, (326)  computational domain is given by
a;
e, = 9=(3), o, = oa(y), (3.27) Q= {(x,y)|b<xsb+§,§<y<L;
Jw L
ox . b+5<x<c,0<y<L}.
" =11 (@, ). (3.28)
M
o e Then the inflow condition at the boundary T', = {(x, y) |

4. NUMERICAL IMPLEMENTATION AND RESULTS

x=b,L/2 =y = L}is given by

16a
w(b,y) = Iz (4y —3L),

In this section we consider the numerical solution of the
original problem (2.9)—(2.13) on the given computational
domain Q7. This steady state solution is computed as the
limit in time of the unsteady N-S equations, which are
discretized by an ADI method [15].

o) =2 (v = 5) 51— ).

Thus #..(y) and w.(y) are given by
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TABLE VII
Re =20,c=d = 3.0

TABLE IX
Re =100,c =d = 3.0

M 0 1 2
err(wg — om)(d) 01125 1.0865 X 102 1.4529 x 107
err( — Yan)(d) 52035 X 10 5.6575 X 104 51546 x 107

M 2 4 6
err(wg — om)(d) 03643 65859 X 102 52694 X 10~
err(Ps — Yun)(d)  1.8544 X 102 2.8569 X 10  1.8079 x 103

4a
w.(y) = B 2y = L),

da , (L
P (y) :fiyz (5—§> :

we take b = 0.0,a = 1.0, L = 1.0.

To test the artificial boundary conditions, we made three
types of computation using different types of outflow
boundary conditions at artificial boundary I'. in the ex-
ample.

Type 1. Dirichlet boundary condition

(e, y) = u(y), 0(c,y) = 0:(y), 0=y=1L;

Type II. Neumann boundary condition

I _ %@ _ _
™ (c,y) 0,ax(c,y) 0, 0<y=L;

Type III.  Artificial boundary condition (3.22).

In the example, the results are compared with an “exact
solution.” This solution is obtained by using an outflow
boundary very far from the step, at which are presented
Neumann boundary condition. To be precise, the distance
between the step and the outflow boundary for the “exact
solution” is 14 times the height of the step.

Let (¢, wg) denote the “exact solution” and (¥, ;)
(i = I, 11, I1T) denote the numerical solutions corresponding
the boundary conditions type I, II, and III on the artificial
boundary I'.. Figure 1 shows the ‘“exact solution” for
Re = 100. The error wg(d, y) — wi(d, y), ¥e(d, y) —
J;(d, y) on the segment I'y = {(x, y) |[x =d, 0=y =L}
is given. Let

TABLE VIII
Re =50,c=d =30

M 0 2 4
err(wg — om)(d) 02442 78011 X 102 13080 X 1072
ert(Ye — dun)(d) 94361 x 107 1.9261 X 107  4.4893 x 10~

err(fe = J)(d) = \/2 [feld. ) = .y

Then the errors err(wg — ;)(d) and err(yYg — ¢;)(d) are
given in Tables I-1II for Re = 20, 50, and 100. Further-
more the errors wg — w; and Y — i; on the segment I',
are shown in Figs. 2—4.

Tables I-1II and Figs. 2—4 show the artificial boundary
condition presented in this paper to be more accurate than
the Neumann and Dirichlet boundary conditions, which
are often used in the engineering literature.

The influence of the location of the artificial boundary
I'. is shown in Tables IV-VTI and in Figs. 5-7 for different
Reynolds numbers. The location of the artificial boundary
has strong influence for the computational accuracy, spe-
cially for high Reynolds number. The influence of the num-
ber M in the artificial boundary condition (3.22) is shown
in Tables VII-IX for different Reynolds numbers.

5. CONCLUSIONS

A sequence of approximate artificial boundary condi-
tions for nonlinear Navier—Stokes equations has been
designed using an external linear flow and the spectral
Chebyshev Tau method. The artificial boundary conditions
can be used to solve nonlinear N-S equations even though
it is obtained from linearized N-S equations on an external
domain. From the numerical results, we can see that our
artificial boundary condition is more accurate than the
Neumann and Dirichlet boundary conditions which are
often used in the engineering literature. For a given accu-
racy it is possible to compute the problem on a smaller
computational domain using our artificial boundary condi-
tion; thus it saves computing time. The numerical results
show that the location of the artificial boundary depends
on the Reynolds number Re.
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